The Role of Heat Fluxes and Moist Static Energy in Tropical Convergence Zones

1996 ◽  
Vol 124 (10) ◽  
pp. 2089-2099 ◽  
Author(s):  
J. Srinivasan ◽  
G. L. Smith
Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 319
Author(s):  
Lijun Yu ◽  
Shuhui Wu ◽  
Zhanhong Ma

The characteristics of moist static energy (MSE) and its budget in a simulated tropical cyclone (TC) are examined in this study. Results demonstrate that MSE in a TC system is enhanced as the storm strengthens, primarily because of two mechanisms: upward transfer of surface heat fluxes and subsequent warming of the upper troposphere. An inspection of the interchangeable approximation between MSE and equivalent potential temperature (θe) suggests that although MSE is capable of capturing overall structures of θe, some important features will still be distorted, specifically the low-MSE pool outside the eyewall. In this low-MSE region, from the budget analysis, the discharge of MSE in the boundary layer may even surpass the recharge of MSE from the ocean. Unlike the volume-averaged MSE, the mass-weighted MSE in a fixed volume following the TC shows no apparent increase as the TC intensifies, because the atmosphere becomes continually thinner accompanying the warming of the storm. By calculating a mass-weighted volume MSE budget, the TC system is found to export MSE throughout its lifetime, since the radial outflow overwhelms the radial inflow. Moreover, the more intensified the TC is, the more export of MSE there tends to be. The input of MSE by surface heat fluxes is roughly balanced by the combined effects of radiation and lateral export, wherein a great majority of the imported MSE is reduced by radiation, while the export of MSE from the TC system to the environment accounts for only a small portion.


Abstract Convective self-aggregation refers to a phenomenon in which random convection can self-organize into large-scale clusters over an ocean surface with uniform temperature in cloud-resolving models. Previous literature studies convective aggregation primarily by analyzing vertically integrated (VI) moist static energy (MSE) variance. That is the global MSE variance, including both the local MSE variance at a given altitude and the covariance of MSE anomalies between different altitudes. Here we present a vertically resolved (VR) MSE framework that focuses on the local MSE variance to study convective self-aggregation. Using a cloud-resolving simulation, we show that the development of self-aggregation is associated with an increase of local MSE variance, and that the diabatic and adiabatic generation of the MSE variance is mainly dominated by the boundary layer (BL, the lowest 2 km). The results agree with recent numerical simulation results and the available potential energy analyses showing that the BL plays a key role in the development of self-aggregation. Additionally, we find that the lower free troposphere (2 - 4 km) also generates significant MSE variance in the first 15 days. We further present a detailed comparison between the global and local MSE variance frameworks in their mathematical formulation and diagnostic results, highlighting their differences.


2021 ◽  
Vol 34 (11) ◽  
pp. 4243-4260
Author(s):  
Brett Chrisler ◽  
Justin P. Stachnik

AbstractRecent studies have examined moist entropy (ME) as a proxy for moist static energy (MSE) and the relative role of the underlying processes responsible for changes in ME that potentially affect MJO propagation. This study presents an analysis of the intraseasonally varying (ISV) ME anomalies throughout the lifetime of observed MJO events. A climatology of continuing and terminating MJO events is created from an event identification algorithm using common tracking indices including the OLR-based MJO index (OMI), filtered OMI (FMO), real-time multivariate MJO (RMM), and velocity potential MJO (VPM) index. ME composites for all indices show a statistically significant break in the wavenumber-1 oscillation at day 0 for terminating events in nearly all domains except RMM phase 6 and phase 7. The ME tendency is decomposed into horizontal and vertical advection, sensible and latent heat fluxes, and shortwave and longwave radiative fluxes using ERA-Interim data. The relative role of each processes toward the eastward propagation is discussed as well as their effects on MJO stabilization. Statistically significant differences occur for all terms by day −10. A domain sensitivity test is performed where eastward propagation is favored for vertical advection given a larger, asymmetric domain for continuing events. A reduced eastward propagation from vertical advection is evident 2–3 days before similar differences in horizontal advection for terminating events. The importance of horizontal advection for the eastward propagation of the MJO is discussed in addition to the relative destabilization from vertical advection in the convectively suppressed region downstream of future terminating MJOs.


2005 ◽  
Vol 62 (12) ◽  
pp. 4273-4292 ◽  
Author(s):  
Christopher S. Bretherton ◽  
Peter N. Blossey ◽  
Marat Khairoutdinov

Abstract The spatial organization of deep moist convection in radiative–convective equilibrium over a constant sea surface temperature is studied. A 100-day simulation is performed with a three-dimensional cloud-resolving model over a (576 km)2 domain with no ambient rotation and no mean wind. The convection self-aggregates within 10 days into quasi-stationary mesoscale patches of dry, subsiding and moist, rainy air columns. The patches ultimately merge into a single intensely convecting moist patch surrounded by a broad region of very dry subsiding air. The self-aggregation is analyzed as an instability of a horizontally homogeneous convecting atmosphere driven by convection–water vapor–radiation feedbacks that systematically dry the drier air columns and moisten the moister air columns. Column-integrated heat, water, and moist static energy budgets over (72 km)2 horizontal blocks show that this instability is primarily initiated by the reduced radiative cooling of air columns in which there is extensive anvil cirrus, augmented by enhanced surface latent and sensible heat fluxes under convectively active regions due to storm-induced gustiness. Mesoscale circulations intensify the later stages of self-aggregation by fluxing moist static energy from the dry to the moist regions. A simple mathematical model of the initial phase of self-aggregation is proposed based on the simulations. In accordance with this model, the self-aggregation can be suppressed by horizontally homogenizing the radiative cooling or surface fluxes. Lower-tropospheric wind shear leads to slightly slower and less pronounced self-aggregation into bands aligned along the shear vector. Self-aggregation is sensitive to the ice microphysical parameterization, which affects the location and extent of cirrus clouds and their radiative forcing. Self-aggregation is also sensitive to ambient Coriolis parameter f, and can induce spontaneous tropical cyclogenesis for large f. Inclusion of an interactive mixed-layer ocean slows but does not prevent self-aggregation.


2021 ◽  
Author(s):  
Christian Franzke ◽  
Nili Harnik

<p>The atmospheric circulation response to global warming is an important problem which is theoretically still not well understood. This is a particular problem since climate model simulations provide uncertain, and at times contradictory, projections of future climate. In particular, it is still unclear how a warmer and moister atmosphere will affect the atmospheric circulation and mid-latitude storms. Here we perform a trend analysis of various atmospheric circulation measures and of the budgets of dry and moist static energy transports, which will contribute to our understanding of the role of moisture in circulation changes. Our analysis is based on the JRA-55 reanalysis data covering the period 1958 through 2018 for both winter and summer seasons. We focus our analysis on zonal mean quantities for the full latitudinal circles as well as for the Atlantic and Pacific sectors.</p><p>We find significant trends in zonal wind, eddy kinetic energy, Eady growth rate, diabatic heating rates, and specific humidity. The zonal wind changes appear to be in thermal wind balance. We also find that the increase in specific humidity is intensifying the trend in eddy moist static energy transport when compared with eddy dry static energy transport. Since band-pass filtered eddy moist static energy transports are related to storm tracks this suggests that increasing moisture in the atmosphere is contributing to the intensification and meridional shifts of storm tracks. Furthermore, our results suggest that global warming predominantly enhance heat fluxes and to a lesser extend momentum fluxes.</p>


2018 ◽  
Vol 75 (6) ◽  
pp. 1979-1994 ◽  
Author(s):  
Tiffany A. Shaw ◽  
Pragallva Barpanda ◽  
Aaron Donohoe

Abstract A moist static energy (MSE) framework for zonal-mean storm-track intensity, defined as the extremum of zonal-mean transient eddy MSE flux, is derived and applied across a range of time scales. According to the framework, storm-track intensity can be decomposed into contributions from net energy input [sum of shortwave absorption and surface heat fluxes into the atmosphere minus outgoing longwave radiation (OLR) and atmospheric storage] integrated poleward of the storm-track position and MSE flux by the mean meridional circulation or stationary eddies at the storm-track position. The framework predicts storm-track decay in spring and amplification in fall in response to seasonal insolation. When applied diagnostically the framework shows shortwave absorption and land turbulent surface heat fluxes account for the seasonal evolution of Northern Hemisphere (NH) intensity; however, they are partially compensated by OLR (Planck feedback) and stationary eddy MSE flux. The negligible amplitude of Southern Hemisphere (SH) seasonal intensity is consistent with the compensation of shortwave absorption by OLR and oceanic turbulent surface heat fluxes (ocean energy storage). On interannual time scales, El Niño minus La Niña conditions amplify the NH storm track, consistent with decreased subtropical stationary eddy MSE flux. Finally, on centennial time scales, the CO2 indirect effect (sea surface temperature warming) amplifies the NH summertime storm track whereas the direct effect (increased CO2 over land) weakens it, consistent with opposing turbulent surface heat flux responses over land and ocean.


2013 ◽  
Vol 26 (8) ◽  
pp. 2417-2431 ◽  
Author(s):  
Qiongqiong Cai ◽  
Guang J. Zhang ◽  
Tianjun Zhou

Abstract The role of shallow convection in Madden–Julian oscillation (MJO) simulation is examined in terms of the moist static energy (MSE) and moisture budgets. Two experiments are carried out using the NCAR Community Atmosphere Model, version 3.0 (CAM3.0): a “CTL” run and an “NSC” run that is the same as the CTL except with shallow convection disabled below 700 hPa between 20°S and 20°N. Although the major features in the mean state of outgoing longwave radiation, 850-hPa winds, and vertical structure of specific humidity are reasonably reproduced in both simulations, moisture and clouds are more confined to the planetary boundary layer in the NSC run. While the CTL run gives a better simulation of the MJO life cycle when compared with the reanalysis data, the NSC shows a substantially weaker MJO signal. Both the reanalysis data and simulations show a recharge–discharge mechanism in the MSE evolution that is dominated by the moisture anomalies. However, in the NSC the development of MSE and moisture anomalies is weaker and confined to a shallow layer at the developing phases, which may prevent further development of deep convection. By conducting the budget analysis on both the MSE and moisture, it is found that the major biases in the NSC run are largely attributed to the vertical and horizontal advection. Without shallow convection, the lack of gradual deepening of upward motion during the developing stage of MJO prevents the lower troposphere above the boundary layer from being preconditioned for deep convection.


Sign in / Sign up

Export Citation Format

Share Document